8 research outputs found

    Interval Type-2 Beta Fuzzy Near Sets Approach to Content-Based Image Retrieval

    Get PDF
    In computer-based search systems, similarity plays a key role in replicating the human search process. Indeed, the human search process underlies many natural abilities such as image recovery, language comprehension, decision making, or pattern recognition. The search for images consists of establishing a correspondence between the available image and that sought by the user, by measuring the similarity between the images. Image search by content is generaly based on the similarity of the visual characteristics of the images. The distance function used to evaluate the similarity between images depends notonly on the criteria of the search but also on the representation of the characteristics of the image. This is the main idea of a content-based image retrieval (CBIR) system. In this article, first, we constructed type-2 beta fuzzy membership of descriptor vectors to help manage inaccuracy and uncertainty of characteristics extracted the feature of images. Subsequently, the retrieved images are ranked according to the novel similarity measure, noted type-2 fuzzy nearness measure (IT2FNM). By analogy to Type-2 Fuzzy Logic and motivated by near sets theory, we advanced a new fuzzy similarity measure (FSM) noted interval type-2 fuzzy nearness measure (IT-2 FNM). Then, we proposed three new IT-2 FSMs and we have provided mathematical justification to demonstrate that the proposed FSMs satisfy proximity properties (i.e. reflexivity, transitivity, symmetry, and overlapping). Experimental results generated using three image databases showing consistent and significant results

    Simulation numérique des problèmes mécaniques non linéaires par approche mixte MEF-MESHLESS

    No full text
    In this work, we implement a development of mixed discretization MEF-Meshless for solving strongly nonlinear mechanical problem. Particular attention is given to the construction of the shape functions by diffuse approximation. In order to deal with problems of solid mechanics with large strain, we develop a so-called “mixed” numerical method combining both Meshless to discretize areas of high deformation gradient, and Finite Element Method (MEF) for non-concerned areas. We ensure coupling between both discretization methods through the implementation of specific techniques, including the continuity and consistency of the field and the choice of the appropriate method of numerical integration. We test later the reliability and performance of the model by the introduction of a comparative study with a standard FEM model designed for the same numerical conditions to evaluate numerical techniques attributed to our “mixed” model. We develop, thereafter, a model of behavior through a large strain description. We adopt spatial discretization elements “assumed strain” and a suitable time discretization. To validate our “mixed” model, we perform a comparative study of nonlinear simple calculation examplesDans le présent travail, nous mettons en œuvre un développement numérique d’une méthode de discrétisation mixte MEF/Meshless pour la résolution de problème mécanique fortement non-linéaire. Une attention particulière est attribuée à la construction des fonctions de forme par approximation diffuse. Dans le but de traiter des problèmes de la mécanique des solides en transformations finies, nous développons une méthode numérique dite « mixte » unissant à la fois la méthode numérique Meshless afin de discrétiser les zones à fort gradient de déformation, et la méthode des Eléments Finis (MEF) pour les zones les moins sollicitées. Nous veillons donc à assurer le couplage entre ces deux méthodes de discrétisation à travers la mise en œuvre de techniques spécifiques, notamment pour la continuité du domaine et sa consistance en premier lieu, mais aussi pour le choix de la méthode d’intégration numérique appropriée. Nous testons par la suite la fiabilité et la performance du modèle par la mise en place d’une étude comparative avec un modèle MEF standard conçu pour les mêmes conditions numériques, afin de tester la performance des techniques numériques attribuées au modèle « mixte ». Nous développons, par la suite, un modèle de comportement à travers une description des transformations finies. Nous adoptons ainsi une discrétisation spatiale en éléments «assumed strain», et une discrétisation temporelle adaptées. Pour valider notre modèle « mixte » retenu, nous réalisons une étude comparative avec des exemples simples de calcul non linéair

    Numerical simulation of nonlinear mechanical problems by MEF-MESHLESS mixed approach

    No full text
    Dans le présent travail, nous mettons en œuvre un développement numérique d’une méthode de discrétisation mixte MEF/Meshless pour la résolution de problème mécanique fortement non-linéaire. Une attention particulière est attribuée à la construction des fonctions de forme par approximation diffuse. Dans le but de traiter des problèmes de la mécanique des solides en transformations finies, nous développons une méthode numérique dite « mixte » unissant à la fois la méthode numérique Meshless afin de discrétiser les zones à fort gradient de déformation, et la méthode des Eléments Finis (MEF) pour les zones les moins sollicitées. Nous veillons donc à assurer le couplage entre ces deux méthodes de discrétisation à travers la mise en œuvre de techniques spécifiques, notamment pour la continuité du domaine et sa consistance en premier lieu, mais aussi pour le choix de la méthode d’intégration numérique appropriée. Nous testons par la suite la fiabilité et la performance du modèle par la mise en place d’une étude comparative avec un modèle MEF standard conçu pour les mêmes conditions numériques, afin de tester la performance des techniques numériques attribuées au modèle « mixte ». Nous développons, par la suite, un modèle de comportement à travers une description des transformations finies. Nous adoptons ainsi une discrétisation spatiale en éléments «assumed strain», et une discrétisation temporelle adaptées. Pour valider notre modèle « mixte » retenu, nous réalisons une étude comparative avec des exemples simples de calcul non linéaireIn this work, we implement a development of mixed discretization MEF-Meshless for solving strongly nonlinear mechanical problem. Particular attention is given to the construction of the shape functions by diffuse approximation. In order to deal with problems of solid mechanics with large strain, we develop a so-called “mixed” numerical method combining both Meshless to discretize areas of high deformation gradient, and Finite Element Method (MEF) for non-concerned areas. We ensure coupling between both discretization methods through the implementation of specific techniques, including the continuity and consistency of the field and the choice of the appropriate method of numerical integration. We test later the reliability and performance of the model by the introduction of a comparative study with a standard FEM model designed for the same numerical conditions to evaluate numerical techniques attributed to our “mixed” model. We develop, thereafter, a model of behavior through a large strain description. We adopt spatial discretization elements “assumed strain” and a suitable time discretization. To validate our “mixed” model, we perform a comparative study of nonlinear simple calculation example

    Numerical simulation based on FEM/MLS coupling for solid mechanics

    No full text
    International audienceThis paper presents the development of Meshless Methods based on the weighted least squares approximation (MLS) [1,3,14] to solve 2D mechanical problems. A particular construction support of weight functions involved in the construction of the MLS shape functions is elaborated. We propose a numerical simulation based on the coupling between the FEM and the MLS method. A Huerta et al. formulation is used to build the MLS shape function in the transition area FEM/MLS

    Numerical simulation of thick sheet slitting processes: Modelling using continuum damage mechanics

    No full text
    International audienceThis work consists on the modelling and numerical simulation of specific cutting processes of thick sheets using advanced constitutive equations accounting for elastoplasticity with mixed hardening and ductile damage. Strong coupling between all the mechanical fields and the ductile damage is accounted for. First the complex kinematics of the slitting process is described. Then, the fully and strongly coupled constitutive equations are presented. Finally the influence of the main technological parameters of the slitting process is studied focusing in the minimization of the cutting forces

    Numerical simulation of thick sheet slitting processes: Modelling using continuum damage mechanics

    No full text
    International audienceThis work consists on the modelling and numerical simulation of specific cutting processes of thick sheets using advanced constitutive equations accounting for elastoplasticity with mixed hardening and ductile damage. Strong coupling between all the mechanical fields and the ductile damage is accounted for. First the complex kinematics of the slitting process is described. Then, the fully and strongly coupled constitutive equations are presented. Finally the influence of the main technological parameters of the slitting process is studied focusing in the minimization of the cutting forces

    Modelling and numerical simulation of thick sheet double slitting process using continuum damage mechanics

    No full text
    International audienceThis work concerns the modelling and numerical simulation of specific thick sheet cutting process using advanced constitutive equations accounting for elasto-plasticity with mixed hardening fully coupled with isotropic ductile damage. First, the complex kinematics of the different tools is modelled with specific boundary conditions. Second, the fully and strongly coupled constitutive equations are summarized and the associated numerical aspects are shortly presented. An inverse material identification procedure is used to determine the convenient values of the material parameters. Finally, the double slitting process is numerically simulated and the influence of the main technological parameters studied focusing on the cutting forces
    corecore